

Heat Pump

Technical Report

Table of Contents

Contents

Inputs	3
Materials	4
Heating Check	6
Heat Pump Check	10
Sound Check	11
Hot Water Calculations	12

Inputs

Property Details

Year built	Pre 2000

Design Data

Outside Design Temp – ODT	-3°C
Degree Days (DD)	2254
Mean air temp – MAT	10°C
Altitude	5m

Building Requirements

Space Heating load	6388W
Total area of building	120.01m ²
Average Watts per metre square heat loss	53W/m ²

Materials

The list of materials surveyed in the building. Radiators that will be removed are displayed with a lighter shade. Floors, intermediate floors, roofs, roof glazing and dormers are not shown in the drawings but are displayed in the material list.

Ground floor

First floor

Window

Building Regs 1999 U-value: 0.45 Thickness: 200 mm

.....

Intermediate Floor

.....

Intermediate floors, boarding 19mm, airspace 100mm insulation between joists, 9.5mm plasterboard

.....

.......

U-value: (up) 0.32, (down) 0.31

Intermediate floors, boarding 19mm, airspace between joists, 9.5mm plasterboard

U-value: (up) 1.73, (down) 1.41

Roof

Pitched roof - Slates or tiles, sarking felt, ventilated air space, 300mm insulation between rafters, 9.5 mm plasterboard U-value: 0.12

Pitched roof - Slates or tiles, sarking felt, ventilated air space, 200mm insulation between rafters, 9.5 mm plasterboard U-value: 0.18

.....

.....

Heating check

We have checked that every room in your property will still be warm enough after the installation of the heat pump.

We've surveyed every room to work out the total expected heat loss through the ventilation, roof, walls, floors, windows and doors, at the specified room temperature. We've then compared this with the heat that the heat emitters will produce to ensure that every room will be warm enough. Radiators that will be removed are displayed with a lighter shade.

The output power of each radiator is calculated using:

The proposed flow temperature	55°C
The dT	8°C
The mean water temperature	51°C

Ground floor

Utility

Area: 3.67 m² Heat loss: 104 W/m² Design Temp: 18°C Air changes: 3/hr

	~	Sufficient heating	548 W / 381 W
	IUU	K2	As Surveyed
00	W400 x H900 mm	548 W	

Kitchen

Area: 15.02 m² Heat loss: 43 W/m² Design Temp: 18°C Air changes: 2/hr

Assumptions

We have assumed an outside design temp of **-3.0**°C. This is based on tables of typical minimum winter temperatures in the UK.

We have used different design temperatures for different types of room. Bathrooms are typically kept warmer than living spaces such as lounges, kitchens and bedrooms for example, while utility spaces can be kept at a lower temperature. Kitchens and bathrooms also have more ventilation than other rooms, so we have allow for more heat loss through air exchange to these rooms.

Most heat loss from a property is through the building fabric however. We have provided a floorplan with a list of the materials we have used for the model along with a measure (U-value) of their insulating properties.

Cloak/WC

Area: 2.14 m² Heat loss: 94 W/m² Design Temp: 18°C Air changes: 2/hr

Lounge

Area: 18.52 m² Heat loss: 100 W/m² Design Temp: 21°C Air changes: 3/hr

~	Sufficient heating	1913 W / 1857 W
ហ	K2 W1000 x H600 mm	As Surveyed 875 W
ហា	K2 W1500 x H450 mm	As Surveyed 1038 W

Garage

Area: 13.55 m² Heat loss: -18 W/m² Design Temp: 5°C Air changes: 3/hr

First floor

Bed & Ensuite

Area: 12.39 m² Heat loss: 71 W/m² Design Temp: 21°C Air changes: 2/hr

Bedroom

Area: 9.01 m² Heat loss: 36 W/m² Design Temp: 18°C Air changes: 1/hr

Bedroom

Area: 11.33 m² Heat loss: 29 W/m² Design Temp: 18°C Air changes: 1/hr

Bed & Ensuite

Area: 4.81 m² Heat loss: 61 W/m² Design Temp: 21°C Air changes: 2/hr

Bath

Area: 5.62 m² Heat loss: 103 W/m² Design Temp: 22°C Air changes: 3/hr

Why do I need new radiators?

Heat pumps work more efficiently at low flow temperatures - but at low temperatures small radiators may not have enough surface area to adequately heat a room.

With new, larger radiators you will use less energy to heat your property than if you used existing smaller radiators but had to run your heat pump at a higher temperature.

Study

Area: 9.90 m² Heat loss: 66 W/m² Design Temp: 21°C Air changes: 1.5/hr

	Sufficient heating	761 W / 657 W	
	IUU	K2	As Surveyed
	W1100 x H450 mm	761 W	

Landing

Area: 6.75 m² Heat loss: 12 W/m² Design Temp: 18°C Air changes: 2/hr

Appendix

Heat Pump Check

Your heat pump: Vaillant aroTHERM plus 7

Total heat loss	6389 W
Area of building	120.01 m ²
Average heat loss	53 W/m ²
Output power of Vaillant aroTHERM plus 7 at the ODT and proposed flow temperature	7400 W

Heat pump meets demand

At the ODT -3 and proposed flow temperature 55°C, the total heat loss is less than the output power of the heat pump.

Sound check

Before your heat pump can be installed, we need to check that the noise it creates will not disturb your neighbours. Modern heat pumps are quiet, but are best not sited very close to doors or windows that may be open.

The sound check assesses how much sound from the heat pump will be transmitted to neighbouring properties. If the maximum sound level is less than 42dB then the installation can proceed without a planning application under the 'permitted development' rules.

Full details on the method used can be found in the MCS020 document on the MCS website.

Full Barrier

MCS020 Sound Level Calculation

1. Sound power level		55.0 dB
2. Sound pressure level	Q4 (two reflective s	urfaces)
3. Distance from heat pump to ass	essment position	10 m
4. dB Distance reduction		-25 dB
5. Barriers between heat pump & a	assessment position	Yes
6. Sound pressure level @ assessm	nent position	20 dB
7. Background noise level		40 dB
8. Difference between 6 & 7		20 dB
9. Decibel Correction		0.1 dB
10. Final Result		41 dB

Sound requirements met

The maximum sound pressure at the assessment position is expected to be 41dB. This is below the permitted limit of 42dB.

Hot Water Calculations

Heat pumps are able to produce heat energy for both your heating system and your domestic hot water (DHW). However, they are not capable of producing instantaneous DHW for your taps, baths and showers and so a thermal store is required.

MCS guidance states that this thermal store should be a minimum of 45ℓ per occupant. Based on this, we have selected a 250ℓ DHW store for your property and the details of the storage temps, reheat times and energy consumption are given below.

DHW calculations are based on the parameters given below. Actual energy consumption will vary with usage habits, variation in system settings and outdoor conditions.

DHW Storage Details

Make	UK Cylinders
Model	FCHPD3250
Nominal Capacity	250 ł
Electric Immersion	3 kW
Dimension (L × W × H)	545 × 545 × 1701 mm
DHW System Details	
Hot water storage temperature	50°C
Supply water temperature	10°C
Flow temperature whilst providing hot wa	ater 55°C
Pipework efficiency	80%
Heat pump capacity output @ 55°C	7.4 kW
Number of occupants	3
Water consumption per person per day	50 ł
DHW Calculations	
Hot water storage reheat time	118 min
DHW Energy demand excluding Legionell	a 2555 kWh/yr
DHW Energy demand including Legionella	a 2711 kWh/yr
Mixed water volume @40°C	333 l
Legionella Details	
Legionella purge	yes
Legionella purge frequency	weekly
Legionella purge hours (weekly)	1 hr
Legionella heat source	immersion
Legionella purge energy demand	156 kWh/yr

Legionella

Legionella is an aquatic pathogen that thrives in warm stagnant water, and can cause diseases such as Legionnaires' when inhaled. In order for Legionella to multiply and grow to dangerous levels, it requires stagnant water and a temperature of between 20°C and 40°C. Eliminating either of these conditions will prevent it from growing and using most of your DHW capacity each day will likely prevent growth to dangerous levels. If you do store water at optimum growth conditions, then an anti-Legionella cycle (Legionella purge) will kill off any bacteria that might have formed by sterilising the water at a high temperature (70°C = instantly kills, 65°C = 100% in 2 mins, 60°C =100% in 30 mins).